久久99国产亚洲高清观看首页,久久久久综合精品福利啪啪,国产成人免费午夜在线观看,91视频网,久久精品国产福利国产琪琪,久久国产精品免费观看,国产精品成

雙曲線的幾何性質教案

時間:2021-12-13 19:06:31 教案 我要投稿

雙曲線的幾何性質教案

  作為一名為他人授業(yè)解惑的教育工作者,就不得不需要編寫教案,編寫教案助于積累教學經驗,不斷提高教學質量。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編精心整理的雙曲線的幾何性質教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

雙曲線的幾何性質教案

雙曲線的幾何性質教案1

  ㈠課時目標

  1.熟悉雙曲線的幾何性質。

  2.能理解離心率的大小對雙曲線形狀的影響。

  3.能運用雙曲線的幾何性質或圖形特征,確定焦點的位置,會求雙曲線的標準方程。

 、娼虒W過程

  [情景設置]

  敘述橢圓的幾何性質,并填寫下表:

  方程

  性質

  圖像(略)

  范圍-a≤x≤a,-b≤y≤b

  對稱性對稱軸、對稱中心

  頂點(±a,0)、(±b,0)

  離心率e=(幾何意義)

  [探索研究]

  1.類比橢圓的幾何性質,探討雙曲線的幾何性質:范圍、對稱性、頂點、離心率。

  雙曲線的實軸、虛軸、實半軸長、虛半軸長及離心率的定義。

  雙曲線與橢圓的幾何性質對比如下:

  方程

  性質

  圖像(略)(略)

  范圍-a≤x≤a,-b≤y≤bx≥a,或x≤-a,y∈R

  對稱性對稱軸、對稱中心對稱軸、對稱中心

  頂點(±a,0)、(±b,0)(-a,0)、(a,0)

  離心率0<e=<1

  e=>1

  下面繼續(xù)研究離心率的幾何意義:

  (a、b、c、e關系:c2=a2+b2, e=>1)

  2.漸近線的發(fā)現(xiàn)與論證

  根據橢圓的上述四個性質,能較為準確地把畫出來嗎?(能)

  根據上述雙曲線的四個性質,能較為準確地把畫出來嗎?(不能)

  通過列表描點,能把雙曲線的頂點及附近的點,比較精確地畫出來,但雙曲線向何處伸展就不很清楚。

  我們能較為準確地畫出曲線y=,這是為什么?(因為當雙曲線伸向遠處時,它與x軸、y軸無限接近)此時,x軸、y軸叫做曲線y=的漸近線。

  問:雙曲線有沒有漸近線呢?若有,又該是怎樣的直線呢?

  引導猜想:在研究雙曲線的范圍時,由雙曲線的標準方程可解出:

  y=± =±

  當x無限增大時,就無限趨近于零,也就是說,這是雙曲線y=±

  與直線y=±無限接近。

  這使我們猜想直線y=±為雙曲線的漸近線。

  直線y=±恰好是過實軸端點A1、A2,虛軸端點B1、B2,作平行于坐標軸的直線x=±a, y=±b所成的矩形的兩條對角線,那么,如何證明雙曲線上的點沿曲線向遠處運動時,與漸近線越來越接近呢?顯然,只要考慮第一象限即可。

  證法1:如圖,設M(x0,y0)為第一象限內雙曲線上的仍一點,則

  y0=,M(x0,y0)到漸近線ay-bx=0的距離為:

  ∣MQ∣= =

  =.

  點M向遠處運動,x0隨著增大,∣MQ∣就逐漸減小,M點就無限接近于y=

  故把y=±叫做雙曲線的漸近線。

  3.離心率的幾何意義

  ∵e=,c>a, ∴e>1由等式c2-a2=b2,可得===

  e越。ń咏1)越接近于0,雙曲線開口越小(扁狹)

  e越大越大,雙曲線開口越大(開闊)

  4.鞏固練習

  求下列雙曲線的漸近線方程,并畫出雙曲線。

 、4x2-y2=4 ②4x2-y2=-4

  已知雙曲線的漸近線方程為x±2y=0,分別求出過以下各點的雙曲線方程

 、費(4,)②M(4,)

  [知識應用與解題研究]

  例1求雙曲線9y2-16x2=144的實半軸長和虛半軸長、焦點坐標、離心率、漸近線方程。

  例2雙曲線型自然通風塔的外形,是雙曲線的一部分繞其虛軸旋轉而成的曲面,如圖;它的最小半徑為12m,上口半徑為13m,下口半徑為25m,高為55m,選擇適當?shù)淖鴺讼,求出此雙曲線的方程(精確到1m)

 、杼釤捒偨Y

  1.雙曲線的幾何性質及a、b、c、e的關系。

  2.漸近線是雙曲線特有的性質,其發(fā)現(xiàn)證明蘊含了重要的數(shù)學思想與數(shù)學方法。

  3.雙曲線的幾何性質與橢圓的幾何性質類似點和不同點。

雙曲線的幾何性質教案2

  雙曲線的幾何性質(第1課時)

  ㈠課時目標

  1.熟悉雙曲線的幾何性質。

  2.能理解離心率的大小對雙曲線形狀的影響。

  3.能運用雙曲線的幾何性質或圖形特征,確定焦點的位置,會求雙曲線的標準方程。

  ㈡教學過程[情景設置]

  敘述橢圓 的幾何性質,并填寫下表:方程性質

  圖像(略)范圍-a≤x≤a,-b≤y≤b對稱性對稱軸、對稱中心頂點(±a,0)、(±b,0)離心率e=(幾何意義)

  [探索研究]1.類比橢圓 的幾何性質,探討雙曲線 的幾何性質:范圍、對稱性、頂點、離心率。 雙曲線的實軸、虛軸、實半軸長、虛半軸長及離心率的定義。雙曲線與橢圓的幾何性質對比如下: 方程性質

  圖像(略) (略)范圍-a≤x≤a,-b≤y≤bx≥a,或x≤-a,y∈R對稱性對稱軸、對稱中心對稱軸、對稱中心頂點(±a,0)、(±b,0)(-a,0)、(a,0)離心率0<e=<1e=>1

  下面繼續(xù)研究離心率的幾何意義:(a、b、c、e關系:c2=a2+b2, e=>1)

  2.漸近線的發(fā)現(xiàn)與論證根據橢圓的上述四個性質,能較為準確地把 畫出來嗎?(能)根據上述雙曲線的四個性質,能較為準確地把 畫出來嗎?(不能)通過列表描點,能把雙曲線的頂點及附近的點,比較精確地畫出來,但雙曲線向何處伸展就不很清楚。我們能較為準確地畫出曲線y=,這是為什么?(因為當雙曲線伸向遠處時,它與x軸、y軸無限接近)此時,x軸、y軸叫做曲線y=的漸近線。問:雙曲線 有沒有漸近線呢?若有,又該是怎樣的直線呢?引導猜想:在研究雙曲線的范圍時,由雙曲線的標準方程可解出:y=± =± 當x無限增大時, 就無限趨近于零,也就是說,這是雙曲線y=± 與直線y=± 無限接近。這使我們猜想直線y=± 為雙曲線的漸近線。直線y=± 恰好是過實軸端點A1、A2,虛軸端點B1、B2,作平行于坐標軸的直線x=±a, y=±b所成的矩形的兩條對角線,那么,如何證明雙曲線上的點沿曲線向遠處運動時,與漸近線越來越接近呢?顯然,只要考慮第一象限即可。證法1:如圖,設M(x0,y0)為第一象限內雙曲線 上的仍一點,則y0= ,M(x0,y0)到漸近線ay-bx=0的距離為:∣MQ∣= == . 點M向遠處運動, x0隨著增大,∣MQ∣就逐漸減小,M點就無限接近于 y=故把y=± 叫做雙曲線 的漸近線。

  3.離心率的幾何意義∵e=,c>a, ∴e>1由等式c2-a2=b2,可得 ===e越。ń咏1) 越接近于0,雙曲線開口越。ū猹M)e越大 越大,雙曲線開口越大(開闊)

  4.鞏固練習 求下列雙曲線的漸近線方程,并畫出雙曲線。 ①4x2-y2=4 ②4x2-y2=-4 已知雙曲線的漸近線方程為x±2y=0,分別求出過以下各點的雙曲線方程 ①M(4, ) ②M(4, )[知識應用與解題研究]例 1 求雙曲線9y2-16x2=144的實半軸長和虛半軸長、焦點坐標、離心率、漸近線方程。例2 雙曲線型自然通風塔的外形,是雙曲線的一部分繞其虛軸旋轉而成的曲面,如圖;它的最小半徑為12m,上口半徑為13m,下口半徑為25m,高為55m,選擇適當?shù)淖鴺讼担蟪龃穗p曲線的方程(精確到1m)

  ㈣提煉總結

  1.雙曲線的幾何性質及a、b、c、e的關系。

  2.漸近線是雙曲線特有的性質,其發(fā)現(xiàn)證明蘊含了重要的數(shù)學思想與數(shù)學方法。

  3.雙曲線的`幾何性質與橢圓的幾何性質類似點和不同點。

雙曲線的幾何性質教案3

  一、課前預習目標

  理解并掌握雙曲線的幾何性質,并能從雙曲線的標準方程出發(fā),推導出這些性質,并能具體估計雙曲線的形狀特征。

  二、預習內容

  1、雙曲線的幾何性質及初步運用。

  類比橢圓的幾何性質。

  2。雙曲線的漸近線方程的導出和論證。

  觀察以原點為中心,2a、2b長為鄰邊的矩形的兩條對角線,再論證這兩條對角線即為雙曲線的漸近線。

  三、提出疑惑

  同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中

  課內探究

  1、橢圓與雙曲線的幾何性質異同點分析

  2、描述雙曲線的漸進線的作用及特征

  3、描述雙曲線的離心率的作用及特征

  4、例、練習嘗試訓練:

  例1。求雙曲線9y2—16x2=144的實半軸長和虛半軸長、焦點坐標、離心率、漸近線方程。

  解:

  解:

  5、雙曲線的第二定義

  1)、定義(由學生歸納給出)

  2)、說明

 。ㄆ撸┬〗Y(由學生課后完成)

  將雙曲線的幾何性質按兩種標準方程形式列表小結。

  作業(yè):

  1、已知雙曲線方程如下,求它們的兩個焦點、離心率e和漸近線方程。

 。1)16x2—9y2=144;

 。2)16x2—9y2=—144。

  2、求雙曲線的標準方程:

 。1)實軸的長是10,虛軸長是8,焦點在x軸上;

 。2)焦距是10,虛軸長是8,焦點在y軸上;

  曲線的方程。

  點到兩準線及右焦點的距離。

【雙曲線的幾何性質教案】相關文章:

1.數(shù)學教案-雙曲線的幾何性質

2.雙曲線教學設計

3.小數(shù)的性質數(shù)學教學教案

4.雙曲線的蹤跡高中生散文

5.小數(shù)的性質數(shù)學教學教案7篇

6.對數(shù)的性質

7.相似三角形的性質教案

8.小數(shù)的性質說課稿

民权县| 微博| 南昌县| 彰化县| 新田县| 北安市| 阿坝| 波密县| 富川| 千阳县| 河南省| 塔城市| 长丰县| 长宁区| 肥乡县| 自贡市| 嘉定区| 阿克苏市| 乌海市| 金昌市| 乌拉特中旗| 沅江市| 武山县| 民和| 浦县| 苏尼特左旗| 永善县| 陆河县| 阜阳市| 武川县| 甘南县| 新泰市| 麻城市| 府谷县| 大邑县| 平果县| 怀宁县| 黄石市| 苗栗市| 克山县| 苍南县|