零點定理:設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),且f(a)與 f(b)異號(即f(a)× f(b)<0),那么在開區(qū)間(a,b)內(nèi)至少有函數(shù)f(x)的一個零點,即至少有一點ξ(a<ξ零點定理是介值定理的特殊情形。 ">

久久99国产亚洲高清观看首页,久久久久综合精品福利啪啪,国产成人免费午夜在线观看,91视频网,久久精品国产福利国产琪琪,久久国产精品免费观看,国产精品成

介值定理和零點定理的區(qū)別

回答
瑞文問答

2024-06-18

介值定理:連續(xù)函數(shù)的在一個區(qū)間內(nèi)的函數(shù)值肯定介于最大值和最小值之間。
零點定理:設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),且f(a)與 f(b)異號(即f(a)× f(b)<0),那么在開區(qū)間(a,b)內(nèi)至少有函數(shù)f(x)的一個零點,即至少有一點ξ(a<ξ零點定理是介值定理的特殊情形。

擴展資料

  介值定理和零點定理的區(qū)別

  介值定理,又名中間值定理,是閉區(qū)間上連續(xù)函數(shù)的性質(zhì)之一,閉區(qū)間連續(xù)函數(shù)的重要性質(zhì)之一。在數(shù)學(xué)分析中,介值定理表明,如果定義域為[a,b]的連續(xù)函數(shù)f,那么在區(qū)間內(nèi)的某個點,它可以在f(a)和f(b)之間取任何值,也就是說,介值定理是在連續(xù)函數(shù)的一個區(qū)間內(nèi)的函數(shù)值肯定介于最大值和最小值之間。

  零點定理與介值定理意思差不多,零點定理是與x軸的交點介值定理是與兩數(shù)之間的交點 其實質(zhì)都是講函數(shù)連續(xù)性的。 只要是連續(xù)函數(shù),問題就明了。 連續(xù)在于一個 x 有一個y值的對應(yīng)性。

梅河口市| 鲜城| 衡水市| 阳山县| 磴口县| 凤凰县| 岳西县| 杭州市| 灵宝市| 海城市| 桃江县| 南靖县| 繁昌县| 永修县| 霍林郭勒市| 东乌珠穆沁旗| 凭祥市| 磴口县| 邛崃市| 措美县| 曲靖市| 汽车| 邹城市| 郎溪县| 白山市| 社旗县| 柞水县| 抚顺市| 锦州市| 广州市| 烟台市| 小金县| 扶余县| 瑞丽市| 大荔县| 涟源市| 义马市| 宝应县| 汤原县| 南宁市| 林西县|